繼電器是什么繼電器分類 繼電器主要作用
繼電器(英文名稱:relay)是一種電控制器件,是當輸入量(激勵量)的變化達到規定要求時,在電氣輸出電路中使被控量發生預定的階躍變化的一種電器。它具有控制系統(又稱輸入回路)和被控制系統(又稱輸出回路)之間的互動關系。通常應用于自動化的控制電路中,它實際上是用小電流去控制大電流運作的一種“自動開關”。故在電路中起著自動調節、安全保護、轉換電路等作用。
中文名:繼電器
外文名:relay
類型:電控制器件
組成:線圈和觸點組
分類:電磁繼電器、固體繼電器等
作用:自動調節、轉換電路等作用
目錄
1發展歷史
2主要作用
3分類
4繼電器主要產品技術參數
5繼電器測試
6符號表示方法
7繼電器的測試
8種類舉例
▪電磁式繼電器
▪熱繼電器
▪時間繼電器
9可靠性
10新型繼電器
發展歷史
在18世紀的時候,科學家們還認為電和磁是風馬牛不相及的兩種物理現象。1820年丹麥物理學家奧斯特發現電流的磁效應后,1831年英國物理學家法拉第又發現了電磁感應現象。這些發現證實了電能和磁能可以相互轉化,這也為后來的電動機和發電機的誕生奠定了基礎;人類則因這些發明創造從此邁入電氣時代。19世紀30年代,美國物理學家約瑟夫·亨利在研究電路控制時利用電磁感應現象發明了繼電器。最早的繼電器是電磁繼電器,它利用電磁鐵在通電和斷電下磁力產生和消失的現象,來控制高電壓高電流的另一電路的開合,它的出現使得電路的遠程控制和保護等工作得以順利進行。繼電器是人類科技史上的一項偉大發明創造,它不僅是電氣工程的基礎,也是電子技術、微電子技術的重要基礎。[2]
主要作用
繼電器是具有隔離功能的自動開關元件,廣泛應用于遙控、遙測、通訊、自動控制、機電一體化及電力電子設備中,是最重要的控制元件之一。[3]
繼電器一般都有能反映一定輸入變量(如電流、電壓、功率、阻抗、頻率、溫度、壓力、速度、光等)的感應機構(輸入部分);有能對被控電路實現“通”、“斷”控制的執行機構(輸出部分);在繼電器的輸入部分和輸出部分之間,還有對輸入量進行耦合隔離,功能處理和對輸出部分進行驅動的中間機構(驅動部分)。[3]
作為控制元件,概括起來,繼電器有如下幾種作用:[3]
1)擴大控制范圍:例如,多觸點繼電器控制信號達到某一定值時,可以按觸點組的不同形式,同時換接、開斷、接通多路電路。[3]
2)放大:例如,靈敏型繼電器、中間繼電器等,用一個很微小的控制量,可以控制很大功率的電路。[3]
3)綜合信號:例如,當多個控制信號按規定的形式輸入多繞組繼電器時,經過比較綜合,達到預定的控制效果。[3]
4)自動、遙控、監測:例如,自動裝置上的繼電器與其他電器一起,可以組成程序控制線路,從而實現自動化運行。[3]
分類
1、按繼電器的工作原理或結構特征分類:
1)電磁繼電器:利用輸入電路內電流在電磁鐵鐵芯與銜鐵間產生的吸力作用而工作的一種電氣繼電器。[4]
2)固體繼電器:指電子元件履行其功能而無機械運動構件的,輸入和輸出隔離的一種繼電器。[4]
3)溫度繼電器:當外界溫度達到給定值時而動作的繼電器。[4]
4)舌簧繼電器:利用密封在管內,具有觸電簧片和銜鐵磁路雙重作用的舌簧動作來開,閉或轉換線路的繼電器。[4]
5)時間繼電器:當加上或除去輸入信號時,輸出部分需延時或限時到規定時間才閉合或斷開其被控線路繼電器。[4]
6)高頻繼電器:用于切換高頻,射頻線路而具有最小損耗的繼電器。[4]
7)極化繼電器:有極化磁場與控制電流通過控制線圈所產生的磁場綜合作用而動作的繼電器。繼電器的動作方向取決于控制線圈中流過的的電流方向。[4]
8)其他類型的繼電器:如光繼電器,聲繼電器,熱繼電器,儀表式繼電器,霍爾效應繼電器,差動繼電器等。[4]
2、按繼電器的外形尺寸分類:
1)微型繼電器:最長邊尺寸不大于10毫米的繼電器。[5]
2)超小型微型繼電器:最長邊尺寸大于10毫米,但不大于25毫米的繼電器。[5]
3)小型微型繼電器:最長邊尺寸大于25毫米,但不大于50毫米的繼電器。[5]
注:對于密封或封閉式繼電器,外形尺寸為繼電器本體三個相互垂直方向的最大尺寸,不包括安裝件,引出端,壓筋,壓邊,翻邊和密封焊點的尺寸。[4]
3、按繼電器的負載分為:
1)微功率繼電器:當觸點開路電壓為直流28V時,(阻性)為0.1A、0.2A的繼電器。[5]
2)弱功率繼電器:當觸點開路電壓為直流28V時,(阻性)為0.5A、1A的繼電器。[5]
3)中功率繼電器:當觸點開路電壓為直流28V時,(阻性)為2A、5A的繼電器。[5]
4)大功率繼電器:當觸點開路電壓為直流28V時,(阻性)為10A、15A、20A、25A、40A……的繼電器。[5]
4、按繼電器的防護特征分類:
1)密封繼電器:采用焊接或其他方法,將觸點和線圈等密封在罩子內,與圍介質相隔離,其泄漏率較低的繼電器。[5]
2)封閉式繼電器:用罩殼將觸點和線圈等密封(非密封)加以防護的繼電器。[5]
3)敞開式繼電器:不用防護罩來保護觸電和線圈等的繼電器。[5]
以上繼電器在電子制作中最常用的是電磁繼電器和干簧繼電器兩種。[5]
繼電器主要產品技術參數
①額定工作電壓:是指繼電器正常工作時線圈所需要的電壓。根據繼電器的型號不同可以是交流電壓,也可以是直流電壓。[4]
②直流電阻:是指繼電器中線圈的直流電阻,可以通過萬用表測量。[4]
③吸合電流:是指繼電器能夠產生吸合動作的最小電流。在正常使用時,給定的電流必須略大于吸合電流,這樣繼電器才能穩定地工作。而對于線圈所加的工作電壓,一般不要超過額定工作電壓的1.5倍,否則會產生較大的電流而把線圈燒毀。[4]
④釋放電流:是指繼電器產生釋放動作的最大電流。當繼電器吸合狀態的電流減小到定程度時,繼電器就會恢復到未通電的釋放狀態,這時的電流遠遠小于吸合電流。[4]
⑤觸點切換電壓和電流:是指繼電器允許加載的電壓和電流。它決定了繼電器能控制電壓和電流的大小,使用時不能超過此值,否則很容易損壞繼電器的觸點。[4]
繼電器測試
①測觸點電阻:用萬用表的電阻擋,測量常閉觸點與動點電阻,其阻值應為0;而常開觸點與動點的阻值就為無窮大。由此可以區別出那個是常閉觸點,那個是常開觸點。[4]
②測線圈電阻:可用萬用表R×10擋測量繼電器線圈的阻值,從而判斷該線圈是否存在著開路現象。[4]
③測量吸合電壓和吸合電流:用可調穩壓電源和電流表,給繼電器輸入一組電壓,且在供電回路中串入電流表進行監測。慢慢調高電源電壓,聽到繼電器吸合的聲音時,記錄吸合電壓和吸合電流。為求準確,可以嘗試多次求平均值。[4]
④測量釋放電壓和釋放電流:也是像上述那樣連接測試,當繼電器發生吸合后,再逐漸降低供電電壓,當聽到繼電器再次發生釋放聲音時,記下此時的電壓和電流,亦可嘗試多次而取得平均的釋放電壓和釋放電流。一般情況下,繼電器的釋放電壓為吸合電壓的10%~50%如果釋放電壓大小(小于1/10的吸合電壓),則不能正常使用,這樣會對電路的穩定性造成威脅,使工作不可靠。[4]
符號表示方法
繼電器線圈在電路中用一個長方框符號表示,如果繼電器有兩個線圈,就畫兩個并列的長方框。同時在長方框內或長方框旁標上繼電器的文字符號“J”。繼電器的觸點有兩種表示方法:一種是把它們直接畫在長方框一側,這種表示法較為直觀。另一種是按照電路連接的需要,把各個觸點分別畫到各自的控制電路中,通常在同一繼電器的觸點與線圈旁分別標注上相同的文字符號,并將觸點組編上號碼,以示區別。[6]
繼電器的觸點有3種基本形式:[6]
(1)動合型(常開,H型)線圈不通電時兩觸點是斷開的,通電后兩個觸點閉合。以“合”字的拼音字頭“H”表示。[6]
(2)動斷型(常閉,D型)線圈不通電時兩觸點是閉合的,通電后兩個觸點斷開。用“斷”字的拼音字頭“D”表示。[6]
(3)轉換型(Z型)是觸點組型。這種觸點組共有3個觸點,即中間是動觸點,上下各一個靜觸點。線圈不通電時,動觸點和其中一個靜觸點斷開,和另一個閉合;線圈通電后,動觸點就移動,使原來斷開的呈閉合狀態,原來閉合的呈斷開狀態,達到轉換的目的。這樣的觸點組稱為轉換觸點。用“轉”字的拼音字頭“Z”表示。[6]
繼電器的測試
繼電器是智能預付費電能表中的關鍵器件,繼電器的壽命在某種程度上決定了電表壽命,該器件性能好壞對智能預付費電能表運行至關重要。而國內、外繼電器生產廠家眾多,生產規模相差較大,技術水平相距懸殊,性能參數千差萬別,因此,電能表生產廠家在繼電器檢測選型時必須有一套完善的檢測裝置,以保證電表質量。同時,國家電網也加強了智能電能表內繼電器性能參數抽樣檢測,同樣需要相應的檢測設備,檢驗不同廠家生產的電表質量。然而,繼電器檢測設備不僅檢測項目比較單一,檢測過程不能實現自動化,檢測數據需要人工處理和分析,檢測結果具有各種隨機性、人為性,而且,檢測效率低,安全性也得不到保證[7]。
近兩年來,國家電網逐步規范了電表技術要求,制定相關行業標準以及技術規范,這為繼電器參數檢測提出了一些技術難題,如繼電器的負載通斷能力、開關特性測試等。因此,迫切需要研究一種設備,實現繼電器性能參數的綜合檢測[7]。
根據繼電器性能參數測試要求,測試項目可以分為兩大類,一是不帶負載電流的測試項目,如動作值、觸點接觸電阻、機械壽命;二是帶負載電流的測試項目,如觸點接觸電壓、電壽命、過負荷能力。
主要測試項目簡單介紹如下:(1)動作值。繼電器動作時所需電壓值。(2)觸點接觸電阻。觸電閉合時,兩觸頭之間的電阻值。(3)機械壽命。機械部分在不損壞的情況下,繼電器反復開關動作次數。(4)觸點接觸電壓。觸電閉合時,觸電回路中施加一定負載電流,觸點間電壓值。(5)電壽命。繼電器驅動線圈兩端施加額定電壓,觸點回路中施加額定阻性負載時,每小時循環小于300次、占空比1∶4條件下,繼電器的可靠動作次數。(6)過負荷能力。繼電器驅動線圈兩端施加額定電壓,觸點回路中施加1.5倍額定負載時,動作頻率(10±1)次/分條件下,繼電器可靠動作次數[7]。
種類舉例
繼電器的種類很多,按輸入量可分為電壓繼電器、電流繼電器、時間繼電器、速度繼電器、壓力繼電器等,按工作原理可分為電磁式繼電器、感應式繼電器、電動式繼電器、電子式繼電器等,按用途可分為控制繼電器、保護繼電器等,按輸入量變化形式可分為有無繼電器和量度繼電器。[8]
有無繼電器是根據輸入量的有或無來動作的,無輸入量時繼電器不動作,有輸入量時繼電器動作,如中間繼電器、通用繼電器、時間繼電器等。[8]
量度繼電器是根據輸入量的變化來動作的,工作時其輸入量是一直存在的,只有當輸入量達到一定值時繼電器才動作,如電流繼電器、電壓繼電器、熱繼電器、速度繼電器、壓力繼電器、液位繼電器等。[8]
電磁式繼電器
在控制電路中用的繼電器大多數是電磁式繼電器。電磁式繼電器具有結構簡單,價格低廉,使用維護方便,觸點容量小(一般在SA以下),觸點數量多且無主輔之分,無滅弧裝置,體積小,動作迅速、準確,控制靈敏、可靠等特點,廣泛地應用于低壓控制系統中。常用的電磁式繼電器有電流繼電器、電壓繼電器、中間繼電器以及各種小型通用繼電器等。[8]
電磁式繼電器的結構和工作原理與接觸器的相似,主要由電磁機構和觸點組成。電磁式繼電器有直流和交流兩種。在線圈兩端加上電壓或通入電流,產生電磁力,當電磁力大于彈簧反力時,吸動銜鐵使常開常閉接點動作;當線圈的電壓或電流下降或消失時銜鐵釋放,接點復位。[8]
熱繼電器
熱繼電器主要是用于電氣設備(主要是電動機)的過負荷保護。熱繼電器是一種利用電流熱效應原理工作的電器,它具有與電動機容許過載特性相近的反時限動作特性,主要與接觸器配合使用,用于對三相異步電動機的過負荷和斷相保護三相異步電動機在實際運行中,常會遇到因電氣或機械原因等引起的過電流(過載和斷相)現象。如果過電流不嚴重,持續時間短,繞組不超過允許溫升,這種過電流是允許的;如果過電流情況嚴重,持續時間較長,則會加快電動機絕緣老化,甚至燒毀電動機,因此,在電動機回路中應設置電動機保護裝置。常用的電動機保護裝置種類很多,使用最多、最普遍的是雙金屬片式熱繼電器。雙金屬片式熱繼電器均為三相式,有帶斷相保護的和不帶斷相保護的兩種。[8]
時間繼電器
時間繼電器在控制電路中用于時間的控制。其種類很多,按其動作原理可分為電磁式、空氣阻尼式、電動式和電子式等,按延時方式可分為通電延時型和斷電延時型。空氣阻尼式時間繼電器是利用空氣阻尼原理獲得延時的,它由電磁機構、延時機構和觸頭系統3部分組成。電磁機構為直動式雙E型鐵心,觸頭系統借用I-X5型微動開關,延時機構采用氣囊式阻尼器。[8]
可靠性
1、環境對繼電器可靠性的影響:繼電器工作在GB和SF下的平均故障間隔時間最高,達到820000h,而在NU環境下,僅60000h。[9]
2、質量等級對繼電器可靠性的影響:當選用A1質量等級的繼電器時,平均故障間隔時間可達3660000h,而選用C等級的繼電器平均故障間隔時間為110000,其間相差33倍,可見繼電器的質量等級對其可靠性能的影響非常大。[9]
3、觸點形式對繼電器可靠性的影響:繼電器的觸點形式也會對其可靠性產生影響,單擲型繼電器的可靠性都高于相同刀數的雙擲型繼電器,同時隨刀數的增加可靠性逐漸降低,單刀單擲繼電器的平均故障間隔時間是四刀雙擲繼電器的5.5倍。[9]
4、結構類型對繼電器可靠性的影響:繼電器結構類型共有24種,不同類型均對其可靠性產生影響。[9]
5、溫度對繼電器可靠性的影響:繼電器工作溫度范圍在-25~70℃之間。隨著溫度的升高,繼電器的平均故障間隔時間逐漸下降。[9]
6、動作速率對繼電器可靠性的影響:隨著繼電器動作速率的提高,平均故障間隔時間基本呈指數型下降趨勢。因此,若設計的電路要求繼電器的動作速率非常高,那么在電路維修時就需要仔細檢測繼電器以便及時對它更換。[9]
7、電流比對繼電器可靠性的影響:所謂電流比是繼電器的工作負載電流與額定負載電流之比。電流比對繼電器的可靠性影響很大,尤其當電流比大于0.1時,平均故障間隔時間迅速下降,而電流比小于0.1時,平均故障間隔時間基本不變,因此在電路設計時應選用額定電流較大的負載以降低電流比,這樣可保證繼電器乃至整個電路不因工作電流的波動而使可靠性降低。[9]
新型繼電器
新型繼電器是指為了適應新提出的特殊要求,滿足特殊環境條件下的使用而研制生產出的電磁式繼電器,其主要特點是體積小、質量輕、耐振動、抗沖擊、負載范圍從低電平負載到5A、28V額定負載,產品有可靠性指標(失效率等級)要求,產品采用電阻熔焊或激光熔焊密封的氣密式密封結構,主要應用于電子控制設備中的信號傳遞和弱電功率切換。[10]
新型電磁式繼電器包括:非磁保持繼電器和磁保持繼電器。非磁保持繼電器是一種單穩態繼電器,繼電器線圈在規定的電壓激勵量作用下,其觸點輸出狀態改變,但在線圈激勵撤銷后,觸點輸出狀態復原到初始狀態。磁保持繼電器是一種雙穩態繼電器,分單線圈結構和雙線圈結構,線圈激勵為電脈沖方式。對單線圈結構繼電器,當線圈在規定的電壓激勵量作用下其觸點輸出狀態改變,線圈激勵撤銷后,觸點能保持已有狀態,要改變觸點輸出狀態,需對線圈加一規定的反向電壓激勵量。對雙線圈結構繼電器,當第一線圈在規定的電壓激勵量作用下其觸點輸出狀態改變,線圈激勵撤銷后,觸點能保持已有狀態,要改變觸點輸出狀態,需對第二線圈加規定的電壓激勵量。[10]
由于新型繼電器具有的特殊性能,它的檢測方法和檢測要求也不同于常規繼電器的檢測。主要檢測的內容有電氣參數檢測、電氣性能指標檢測、機械性能指標檢測和物理性能指標檢測等。[10]